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Scaling Assumption for Lattice Animals in Percolation 
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A scaling assumption for the number g,s of different cluster configurations 
with perimeter s and size n leads to the desired cluster numbers near the 
percolation threshold. The perimeter distribution function has a mean 
square width proportional to n for large n. The relation between the average 
perimeter and the cluster size n for percolation has three different forms at 
Pc, below Pc, and above Pc and is closely related to the shape of the cluster 
size distribution. 
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1. I N T R O D U C T I O N  

In  the percolation problem, each site of  an infinite lattice is r andomly  
occupied or empty with probabilities p and 1 - p, respectively. The occupied 
sites can be grouped into finite clusters, defined as sets o f  occupied sites 
connected by nearest neighbor distances. For  p above some percolation 
threshold Pc, an infinite cluster exists besides the many  finite clusters. To 
describe microscopically the phase transition and the critical exponents near 
Pe one needs to know the average number  c,  = e,~(p) of  clusters containing 
n occupied sites each. This number  e, again can be calculated exactly if  one 
knows the number  g,s of  geometrically different cluster configurations or 
" an imals"  a) corresponding to the same size n and perimeter s. This pe- 
rimeter s is the number  o f  empty lattice sites that  are nearest neighbors to 
occupied cluster sites. In  this sense the pure geometrical problem o f  deter- 
mining the animal numbers  g,~ is more  fundamental  than the question o f  
p-dependent  cluster numbers  e~. The present paper suggests an approximat ion 
for  the number  gns o f  animals;  this assumption then leads to a consistent 
description o f  the percolation phase transition via the cluster numbers  c, .  
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Assumptions on the number g~ of animals were made earlier by Leath (2) 
and Domb. (1) The problems connected with these assumptions are discussed 
in Refs. 1 and 3; in particular they did not lead to a general scaling form for 
the cluster numbers c, .  (See also Refs. 4-8.) Therefore the present work 
further generalizes these earlier attempts and succeeds in deriving the general 
scaling form for the cluster numbers, as desired, f rom a similar scaling form 
for the animal numbers g,~. 

Section 2 reviews some properties of  the cluster size distribution c, for 
percolation and gives a heuristic "der iva t ion"  of  our basic assumption on 
g,~. In Section 3 we derive f rom the g,~ the cluster numbers c~; thus this 
section is the most important  part. Section 4 discusses the resulting form of 
the average perimeter of  percolation clusters as a function of cluster size n 
and concentration p. We also give a somewhat different derivation of the 
result of  Section 3 for the mean square width of the perimeter distribution 
function. In concluding, Section 5 suggests possible tests of  the present 
suggestions. 

2. T H E  BASIC A S S U M P T I O N  

The known scaling assumption for the cluster numbers c~ is reviewed in 
this section, and a new scaling assumption for the animal numbers g,s is 
made plausible. 

Let c,s be the average number (per lattice site) of  percolation clusters 
with size n and perimeter s; then c, = ~s c,s is the total number of  clusters 
with size n. Similarly, g,~ is the number of geometrically different cluster 
configurations (per laittice site) with size n and perimeter s; and g,  = ~s gas 

is the total number of  animals with fixed size n. The perimeter distribution 
functions thus are c,Jc,~ for percolation clusters and g~Jg ,  for animals. 
Clusters and animals are connected through the exact result (9) 

c.s = g.s(1 - p)Sp'~ (1) 

I f  S and E denote entropy and energy in statistical physics, then in some sense 
g.~ corresponds to eSI~B and p"(1 - p)~ to e-E/kBr; for then we have c~s = 
e-F/% T with a free energy F = E - TS.  But this analogy is not exact, since 
the perimeter of percolation clusters is not identical to the energy of a cluster 
in the Ising magnet. 

Now we restrict ourselves to the phase transition region n -+ ~ ,  p ---> Pc, 
where a scaling form for the percolation cluster numbers c. has been sug- 
gested (4). 

cn oc n-~C(en*) (2) 

where � 9  ~ '=  2 +  1/5, and cr = 1/fi3 in the usual notation of  
critical exponents; for example, ~- _~ 2.054 and a __ 0.39 in two dimensions. (6) 



Scaling Assumption for Lattice Animals in Percolation Theory 127 

The scaling function f = f ( x )  in (2) is analytic in x and finite at x = 0 
[thus c~(pc) ec n-~]; f ( x )  has a maximum at some negative argument  (3,4~ 
corresponding to p below Pc, and f ( x )  decays rapidly away f rom this maxi- 
mum. More  precisely, an exponent ~ can be defined through 

log c~ oc - n  ~ (n -+ co, p # Pc) (3a) 

which means 

l o g f  oc - [xl ~~ (x = ~n ~ --> + co) (3b) 

Then we have in d dimensions presumably (a,s,7,a~ 

~(p < pc) = 1 (3c )  

~(P > Pc) = 1 - 1/d (3d) 

Below Pc each occupied site belongs to some finite cluster: ~ .  cnn = p ;  this 
condit ion leads to a " s u m  ru le"  for  the function f ,  (3,4~ 

fo ~ x -1 -~[ f (x )  f (0)]  dx = 0 

o r  

fo ~ x - ~ f ' ( x )  = (3e) dx 0 

For  animals, the g,~ up to n = 20 were tabulated by Sykes and Glen (6~ 
for  some lattices. The total number  g ,  of  animals o f  size n was found to 
follow 

gn oc n-Oh ~ (4) 

where, in the triangular lattice, 0 __ 1 and h _~ 5.2. 
The average percolation perimeter (s~> is defined as 

(s,> = ~ ,  sc,s/c, (5a) 
8 

Presumably we have, at least for  p = Pc, the relation <1~ 

(&>In = (1 - p ) / p  + ... (5b) 

for large n. With the abbreviations 

a = s / n  (5c) 

ac = (1 -- Pc)/Pc (5d) 

Eq. (5b) now reads 

(a> -+ ac for  p ~ Pc and n ~ co (5e) 

This result completes our  summary  of  known cluster properties. 
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As Eq. (1) indicates, the cluster numbers in percolation theory are known 
for all concentrations p if the p-independent numbers g~8 of animals are 
known. Our question now is: Which assumption for the animal numbers g~, 
gives the above scaling properties and in particular Eq. (2) for the percolation 
problem ? 

Equations (2) and (4) suggest an Ansatz like 

gns oc n-~A~f[(a c - a)n ~ (6) 

with some scaling func t i on f  = f(x).  Here A = A(n, s) is determined such (2) 
that in e,s oc n-~A"p"(1 - p)7"the factors p"(1 - p)8 are cancelled by A s for 
all n and s i fp  is related to s and n via Eq. (5b), i.e., (1 - p)[p = s/n = a. In 
this case we have e,s oc n - %  This requirement for A is fulfilled if (1,2) 

A = A(s/n) = (a + 1)~+1/a ~ (7) 

Since A depends on a, the function f is not proportional to the perimeter 
distribution function g, Jg~ (or c,dc,). These distribution functions for s 
will turn out later to be Gaussians with a width oc ~/n; and thus in the sums 
c, = Y~ e,~ and g,  = Y.~ g,s an additional factor n ~/2 appears. Therefore the 
free exponent y in (6) equals ~- + �89 We thus arrive at the following Ansatz 
as a generalization of the earlier attempts in Refs. 1 and 2: 

g,~ oc n-~-~A'~f[(ac - a)n"] (8) 

with a, a~, and A determined by Eqs. (5c), (5d), and (7). 
This is our basic assumption; in the next section we show that the 

scaling function f appearing in (8) also appears in the number of dusters, 
Eq. (2). We assume (8) to be valid for those values of n and s relevant for the 
percolation phase transition, i.e., for large n and for a near ac. 

3. N U M B E R S  OF C L U S T E R S  A N D  A N I M A L S  

This section discusses the numbers g~ and c~ of animals and percolation 
clusters with a fixed size n. 

From (8) we get for the total number of percolation clusters with size n 

fO t~ c,~ = ~. g,~p'~(1 - p)~ = g~[p(1 - p)=lnn da 
$ 

oc n -~ -~ f  exp{n[(a + 1) ln(a + 1) - a In a + lnp  

+ a ln(1 - p)]}f[(a~ - a)n ~] da 
[ n ( I - - p \ 2 P  2 1  

= n - ' + i f e x p  - ~  a -  P ) T-~_pJ f [ (a~-  a)n ~]da 

= n-~+' f e xp[ -n2 (a  - 1 ; P ) 2 2 - ~ 2 ] f  da (9) 
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where higher terms of  order [ a -  (1 -p ) /p ]3  were neglected. Thus the 
exponential function in (9) has a maximum at a = (1 - p)/p with a width 

A~ --- [n(1 - p)/p211/2 (10) 

in s = an, i.e., a width oc l/~/-n in a, as given by Leath52~ On the other hand, 
the function f in (9) peaks at a ~_ ac with a width ocn -~. The value of  the 
integral (9) is therefore determined for large n by the function that has the 
smaller width. 

We now assume 

c~ < �89 (I1) 

an assumption valid in two dimensions (or _~ 0.39), presumably valid in three 
dimensions (e _~ 0.48), and also slightly below six dimensions, where (11~ 
cr = �89 - (1/98)(6 - d) 2 + .... Thus we exclude the "classical" exponents 
/3 = 7  = 1 and e = �89 from our considerations and restrict ourselves to 
dimensionalities below six. 

With that assumption, for large n the peak in the scaling function f in 
(9) is broader than the peak in the exponential function in (9); thus the 
variation o f f  can be neglected in the evaluation of  the integral: For large n 
the main contribution to the integral (9) comes from (a )  ~ (t - p)/p, i.e., 

( s , )  = n(1 - p)/p + ... (12) 

the width of the peak is [(s~ 2) - (s,)2] 112 = zX,, as given in (10), and varies 
as ~/n. Thus Eq. (9) gives 

c,~ oc n-~f[(ac - (a))n  ~ oc n-Sr(en~ E = (p -Pc)/PPc (13) 

Thus Eq. (2) for the duster  numbers c, has been derived, as promised, from 
Eq. (8) for the animal numbers g,s; and the function f = f ( x )  appearing in 
the c, is the same function as appears in the g,~. 

Similarly, we now evaluate the total number g,  of animals with size n: 

= ~ g ~ s  = n ( g ~ d a  
8 

o~ exp{n[(a + 1) ln(a + 1) - a ln  a]}f[(ac - a)n ~] da 

n-~+~( exp{n[(a + 1) ln(a + 1) - a In a + (l/n) lnf]} da 

(14a) 

In this equation, in contrast to Eq. (9), the asymptotic behavior of  the 
function f in Eq. (3b) also becomes important. For without the function 
f = f ( x ) ,  the exponential term would always increase with increasing a, 
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making the integral divergent. The same effect would appear if we would use 
Leath's Ansatz l n f  ~ -n2~(a - ac - n - O )  2 (apart from constants of order 
unity). Equation (3c) shows that for a above ac, i.e., for negative x, the 
function f = f ( x )  decays asymptotically as l n f ( x - + - o o ) = - e ( - x ) B 6  = 
- c ( a  - ac)~6n; thus ( l / n ) l n f  approaches a finite value for large n.  lit is 
crucial for this discussion that the exponent ~ in (3c) is exactly equal to unity; 
trivial rigorous arguments merely give ~ ~< 1. See also Ref. 7.] Now Eq. (14a) 
reads 

g~ oc f n -~+~ exp{n[(a + 1) ln(a + 1) - a In a - c ( a  - aJ~  d a  

= f n -~+~ e '~(a) d a  (14b) 

If c is a positive constant, as it is in the critical region, the function h ( a )  = 

(a + 1)ln(a + 1) - a In a - c ( a  - a J  ~ has a single maximum at some 
a = ao > ar defined by 

ln(1 + 1 ) = c , 8 3 ( a o _ a j ~ _  1 (15) 

Again expanding quadratically around this maximum, h ( a ) =  h ( a o ) -  

const x (a - ao) 2 + .-. with some positive constant, we get 

g~ oc n - ~ e - ~ %  >~ = n - W  ~ (16a) 

k = (ao + 1) %+1ao% exp[-C(ao - a J  ~] (16b) 

in full agreement with Eq. (4). Actually, since all terms in (I/n) lnfvanishing 
for large n were neglected in the above derivation, Eq. (16a) is not entirely 
correct. The leading n dependence of g,  is still described by )t ~ with k from 
(16b); but higher order terms generalize (16a) to 

g~ = qbh~; (qb)l/~__> 1 for n - + o o  (16c) 

Equation (16c) agrees with general results (~) and also with the numerical fact 
that the exponents 0 and ~- in Eqs. (4) and (16a) are different. 

Thus not only the evaluation of the percolation cluster numbers c, but 
also the animal numbers g, gave reasonable results: The distribution function 
g,~/g,~ for animal perimeters has a peak of width oc ~/n at some So = aon 

which is larger than the average a~n for percolation perimeters at p~. [Pre- 
sumably our fundamental assumption (8) is no longer valid for the region 
n -+ ~ ,  a -+ ao > a~ required to evaluate g.. In that case the "cons tan t"  c 
of Eq. (14b) will depend on a and give corrections to Eq. (15) due to d c / d a .  

For the cluster numbers c,~ decay as log c~ oc - n ~ not only for p near Pc, but 
apparently everywhere, TM 7,8) Analogously, we expect the term In f i n  Eq. (14a) 
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still to vary as n, even i fa  is not close to a~. Since these problems would appear 
relevant only in a numerical evaluation of ao and I ,  which is not undertaken 
here, we neglect them.] 

4. M E A N  V A L U E  A N D  W I D T H  OF PERIMETER 
D I S T R I B U T I O N  F U N C T I O N  

We derive here the next-order term in the perimeter vs. size relation of 
percolation clusters and discuss in greater detail the width of the perimeter 
distribution function. 

Equations (5b) and (12) give (sn) = n(1 - p)/p + ..., and now we want 
to evaluate the next term in this relation. More precisely, for fixed p near Pc 
we calculate the exponent of  n in the leading correction term. For this purpose 
we can no longer neglect in the integral (9) the variation of  the function f 
with a, as was done in deriving (12). Taking the influence of  the func t i on fa s  
a small correction, we now have to evaluate 

c,~ oc n-~+~ f e ~(a>'~ da (15a) 
d 

where 

k(a) = (a + 1) ln(a + 1) - a l n a  + l np  + aln(1 - p )  

+ ( l /n ) lnf [ (ac  - a)n ~] (15b) 

Minimization of k(a) gives the condition for the mean value ( a ) :  

0 = k ' ( (a ) )  = ln(1 + 1/(a))  + ln(1 - p )  + n~ - (a) )n  ~ 

with the function ~ ( x ) = - d ( I n f ) / d x  = - f ' ( x ) / f ( x ) .  For  large n we find 
f rom this condition 

( a ) = a - P  ( l  + ~ n~-~ P ) 

Since ( 1;,) 
(ac - (a))n`" ~ ac . . . .  n`" = ~n ~ 

in the function ~ apart  f rom higher order terms, we thus find 

<s,> = 1 P - p n + ~ r ~ + -.. (t6) 

Such a structure <s,> = 6n + An" was proposed earlier, (1~ but only with a 
constant coefficient A. 

We see now that the coefficient of  the n ~ term in the perimeter depends 
through q~ = - f ' / f  on the scaling variable En ~ oc (.p - p~)n ~. Therefore, for 
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n ~ oo and p --~ Pc, the fo rm of  t h i s "  excess pe r ime te r "  (i.e., of  the correction 
to the leading te rm ocn) depends on the order  in which the two limits are 
taken,  and we have to distinguish three cases: p = p~, p > p~, and p < Pc �9 

I f p  = Pc and n ~ 0% then <s~) = n(1 - Pc)/Pc + [(1 - p~)/pc2]r ~ ---> O)n ~. 
Since the scaling funct ion f was assumed to be analytic, its derivative f ' ( 0 )  
exists; presumably,  (3'4~ it is negative; thus r  - f ' (O)/ f(O) is positive: 

<s~(p = Pc)> = n(l - P c ) / P c  + const  • n ~ + ..- (17a) 

in agreement  with the suggestion o f  Ref. 10. 
I f p  is fixed to a value close to but  not  equal to Pc, and n--~ m,  then 

(16) gives (s~> = n(1 - p)/p + [(1 - p)/p2]r --> + oo)n% Since in this limit 
q~ = - ( d / d x )  l n f o c  - ( d / d x ) [ x f  oc oc Ixl B~:-~ = I~laOr ~-~, the "excess peri- 
m e t e r "  varies as n~[,l ~r for  sufficiently large cluster sizes n. This means 
that  the excess per imeter  ( s ~ ) -  n(1 - p ) / p  has for large n the same n 
dependence as log c~, for  p bo th  a b o v e  and below Pc (but not  at Pc). This 
conclusion agrees with assumpt ions  in some droplet  models,  where the cluster 
numbers  are propor t iona l  to e x p ( -  const  x surface area), if the surface area 
is identified with the excess perimeter .  (~~ Such a simple relation seems to be 
correct  here if  one looks at  sufficiently large clusters, i.e., at  clusters with radii 
larger than  the coherence length (en ~ ~ + oo). We also see f rom r = - f ' / f  
that  r is posit ive and r  is negative. Thus,  with the ~ f rom Eqs. (3c) 
and (3d) we find 

( s , (p  > Pc)) = n(1 - p)/p + const  x Eao<l-lla)-lnl-1/a (17b) 

(sn(p < Pc)) = n(1 - p)/p - const '  x ( - ~ ) a ~ - i  n (17c) 

Therefore  the excess per imeter  ( s n ) -  [(1 - p ) / p ] n  varies as n 1-1Ia 
above Pc, as n ~ at  Pc, and as n below Pc in the present  scaling theory. 

In  the old theory,  ~1~ the excess per imeter  always varied as n ~ and not  as 
n 1 -~/a; thus D o m b  (~ criticized correctly the identification of  excess per imeter  
and surface area. (~~ But now tha t  identification is allowed again above Pc 
since Eq. (17b) gives to the excess per imeter  the same n dependence as 
expected for  the surface of  a spherical droplet.  This analogy to ra indrops  
below Tc is shown schematically in Fig. 1, which suggests that  the density 
profile o f  large percolat ion clusters (enO---~ +oo)  is similar to the density 
profile o f  raindrops.  (This analogy (3~ was recently questioned. (~2~) Below Pc 
such a droplet  model  breaks down, just  as for  supercritical temperatures  no 
liquid droplets  surrounded by a gas phase can exist. 

Another  measure  of  the dus te r  " s u r f a c e "  is the external perimeter,  (8~ 
which does not  include the per imeter  due to internal holes. Leath  (2~ found 
this external average per imeter  to vary roughly as n below Pc. Table I sum- 
marizes our  present  knowledge abou t  these various " s u r f a c e s " ;  we see a 
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P 

r 

Fig. 1. Drop le t  p ic ture  for  very large percola t ion  c lus ters  above  the  th resho ld  Pc. The  
expected dens i ty  profile p(r) is p lo t ted  aga ins t  the  d is tance  r f r o m  the  center  o f  mas s  o f  a 
large cluster ,  where  the  densi ty  is the  probabi l i ty  tha t  the  lat t ice site at the  place r be longs  
to the  cluster .  The  th ickness  o f  the  t r ans i t i on  region nea r  the  drople t  su r face  is o f  the  
order  o f  the  cor re la t ion  l eng th  s e. T he  va lue  p ( r - - - - 0 )  equa l s  the  probabi l i ty  tha t  an  
a rb i t ra ry  latt ice site be longs  to the  infinite ne twork .  T h u s  this  p ic ture  is expected to be 
valid for  p s l ight ly above  p~ only and  for c lus ter  radii  m u c h  larger  t h a n  f.  It  is sugges ted  
by the  present  resul ts  bu t  no t  yet  tes ted directly. 

strong similarity between various quantities, suggesting for cluster radii much 
larger than the correlation length ~: 

log c~ oc surface area oc excess perimeter oc external perimeter(?) (18) 

(The external perimeter might nearly coincide with the total perimeter and 
thus not measure the surface in more than two dimensions if an infinite net- 
work of connected holes is percolating through all large clusters.) 

Table I. Dependence on n for Various Cluster Propert ies if 
n --> ~ at Fixed p= 

m 

P > P c  P = P c  P < P c  

-- log c .  n 1 - ira log n n 
Excess pe r imete r  n i - ira n a - -  n 

Externa l  per imeter  - -  - -  n 
Surface  a rea  n ~ - 1/~ __ __ 

Tota l  per imeter  n n n 

Here  c, is the  n u m b e r  o f  c lus ters  with n occupied  sites. The  excess 
pe r imete r  is (s~> - n( l  - p ) / p ;  t he  externa l  per imeter  does no t  
coun t  in terna l  holes.  T he  sur face  area  arises f r o m  the  naive  drople t  
p ic ture  o f  Fig. 1. 
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So far we have discussed the mean values of  the perimeter distribution 
function for percolation clusters (cn,/c,) and animals (gnJg,). These distribu- 
tion functions turned out to be Gaussians centered around acn and aon for 
large n near Pc. I f  we now look at the width of these distribution functions 
about  their mean value, we see that for both percolation clusters [Eq. (10)] 
and for animals the width varies as n 1/2. This behavior agrees with Leath's 
result for large n (Monte Carlo). But from the exact perimeter polynomials 
for n up to 20, a width ocn ~ was found in two (a> dimensions (also for the 
animals) and in three dimensions. (8> The present result A~ oc n 1/2 seems more 
reliable since it also follows from a rather different calculation. 

We differentiate twice with respect to p the relation ~n c~n = p for 
P <<. Po, mentioned before Eq. (3e). The first derivative gives (2> 

l dP d ~  d ~ ( ;  / ~ ) p )  
= dp - dp c~n = ~ ~ g~,n -~p [p~(1 - p)~] = c~n 

n $ 

Now we assume (s~) = 8n + bn ~ + ..., with z < 1 ; here ~ can depend on p 
but is not allowed to be a scaling function of en ~, whereas b is allowed to be 
such a function. This assumption agrees with Eq. (16). Thus 

1 = 1 - p  ~ ~ 1 - p  

( 1  ~ p )  ~ (19) 1 = 1 const x ( - e ) - Y -  bn 1 + ~ c,~ 
- ~ 1 - p  

We see that r must equal (1 - p ) / p ,  in agreement with (12), as derived in 
Ref. 2. But if the coefficient ~7 were also a scaling function of r ~, then this 
simple relation would break down. At present we see no reason to allow such 
a complication. [The sum in (19) remains finite if we take z = e and b(EnO oc 
f ' / f ,  because of the requirement (3e) for the scaling function f .  Again our 
approach seems to be consistent.] 

With this result for ~, the second derivative gives, together with the 
definition A~ 2 = <s~ 2) - <s~) 2, 

0 = ~ c~n[p-2(n 2 - n) + (1 - p)-2((s~2) - (s~)) - 2p-~(1 - p)-~n(s~)] 
I I  

= ~ , c ~ n ( P - 2 ( n  l P _ p ( s ~ ) ) 2 + ( 1 - P ) - 2 [ A ~ 2 - n ( ~ ' ~ ) 2 - ( s ~ ) ] }  

Thus apparently the width term A~ 2 has to cancel other terms in order that 
the whole sum vanishes. First, the exponent z cannot be larger than �89 For 
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then the (-bn~) 2 term would be larger than the term ocn and also could not 
be cancelled by the width term (since both are positive). I f  z is smaller than �89 
then the first term is negligible compared to the n term; and the latter has to 
be cancelled by the width term: A, 2 must be of  order n and cannot vary as  
n 1"6, for example. It  could be a scaling function of  En ~, i.e., A~ oc nt/2D(enO). 
I f  the width is not such a complicated scaling function, then we must have 
A, = [n(1 -- p)/p211/2, as in Eq. (10), to fit into Eq. (20). Again our approach 
seems consistent. [If z = �89 then A, 2 must be of  order n or smaller since now 
the (-bn~) 2 term could be cancelled by the n term. In that case, however, it 
would be difficult to prevent the remaining sum in Eq. (19) from diverging, 
which it is not allowed to do.] 

I f  we take z = cr < �89 in agreement with our previous results, then the 
( -bn~)  2 would, for intermediate n, give important  negative corrections to the 
asymptotic scaling result A. oc n 1~2. Indeed, for n = 14 in the triangular 
lattice, our prediction A, 2 = n(1 - p ) / p 2  gives A, ~ = 28 at p = Pc = �89 
whereas the actual result (3~ is only 6.01. Therefore the extrapolation f rom 
n = 14 to n = oo in Ref. 3 was too inaccurate for the width A,. 

5. C O N C L U S I O N  

This paper proposed a not too complicated expression, Eq. (8), for the 
number g~s of geometrically different cluster configurations ("animals") .  
This assumption led to the desired scaling form, Eq. (13), for the number c~ 
of percolation clusters and also to a reasonable result, Eq. (16), for the number 
g~ of animals with fixed size n. A comparison with existing data on g~s and 
c~, could be made(6~ for intermediate n. Also, Monte Carlo tests are possible: 
Leath (2~ determined indirectly the g~s f rom Monte-Carlo generated cluster 
numbers c~. {Apart f rom prefactors, his function m(n, bin) corresponds to 
our scaling function f = f[(ac - a)nq.} More directly, one can perhaps also 
work, similar to Ref. 13, with clusters of  a fixed size n and change only 
randomly the cluster shape. I f  the statistical weight of  different cluster shapes 
varies as (1 - p)~, then one finds in this Monte Carlo simulation the percola- 
tion perimeter distribution c~Jc~; if instead all configurations are given the 
same weight, one finds the animal perimeter distribution g,~/g,, In such a 
calculation one could better check some of our assertions here, e.g., that the 
excess perimeter <s,> - n(1 - p)/p varies for large n as n, n ~ and n 1-1/d 
below, at, and above pc [Eq. (17)]. Or does the average animal perimeter 
indeed approach a value aon which is larger than the average percolation 
cluster perimeter atpc [Eq. (!5)] ? Moreover, our table has "ho le s "  to be filled 
in for the external perimeter. 

More generally, it would be important to find the density profile of  large 
clusters and to  see whether above Pc it agrees with the schematic picture of  
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our figure if one averages over enough clusters of  the same size. A study of  
r andom walks within a cluster (ant-in-a-labyrinth problem) could give a 
first answer. (1~) The same density profile could also be studied for  animals;  
no prediction was dared here. 

Analytically, one could search for  alternatives to the present suggestions, 
that  give the same desired results but  on a different foundation.  Even if the 
present form is accepted as valid asymptotically for large clusters, one needs 
corrections to describe more  accurately the behavior at intermediate cluster 
sizes, for which perimeter polynomials  exist. (6) 

NOTE A D D E D  IN PROOF 

Preprints o f  M. Schwartz, G. R. Reich, and P. L. Leath and of  J. Hoshen 
and D. Stauffer confirm some of  the present results by simpler, more general, 
or  more  reliable derivations. For  example, ( s , ) =  n(1 - p ) / p - ( 1  - p ) d ( l n  cO/dp 

and a similar formula  for A~ hold exactly for all p and thus generalize our 
results o f  Section 4. 
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